RIP-seq应用:Mitochondrial iron chelation ameliorates cigarette smoke–induced bronchitis and emphysema in mice

慢性阻塞性肺部疾病(Chronic obstructive pulmonary disease, COPD)是一种复杂,削弱肺部功能的疾病,主要临床和病理表现包括从气道炎症(慢性支气管炎),肺组织破坏(肺气肿)小气道重塑等(1,2)。COPD的发病机制至今仍然不明确,但是它涉及到肺部对香烟烟雾(cigarette smoke, CS)的异常炎症和细胞反应失调(1)。目前研究表明吸烟和遗传是COPD最大的危险因素(3)。本文作者之前通过对人类全基因组进行全基因组关联分析(genome-wide association studies, GWAS)确定IRP2(也称为IREB2)是COPD的主要候选基因(4-6),此后作者证明IRP2蛋白在COPD患者的肺部含量增加(4)。已有的研究表明IRP2基因位于人类15q25染色体上,该染色体上还包括编码烟碱乙酰胆碱受体的几个部件的基因。此外 GWAS分析表明15q25还与肺癌,外周动脉疾病和尼古丁成瘾相关(7-10)。铁调节蛋白(The iron-regulatory proteins, IRPs)IRP1和IRP2尤其是IRP2负责调节哺乳动物体内细胞铁离子的平衡(11)。IRPs在十二指肠,脊髓和中枢神经扮演非常重要的生理角色,同时IRPs也可能是肺动脉高压和神经性病变等疾病发病原因(12-15)。在细胞内铁耗尽的情况下,IRPs通过与位于mRNA上铁体内平衡基因的铁反应元件(iron-response elements, IREs)结合,导致其翻译被抑制从而降低铁的储存并同时增加铁摄取(12,15)。但是IRP2在肺部的生理功能以及IRP2的mRNA转录还不是很清楚,同时IRP2在肺部暴露在香烟烟雾中COPD发病的响应机制也不是很明确。因此,作者试图通过将COPD实验中小鼠模型和人COPD数据整合,阐述由香烟烟雾引起的COPD中IRP2的功能。

Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks

受到RBA结合蛋白控制的可变剪接过程可能影响大部分基因的表达。近年来越来越多的实验表明,可变剪接的失调可能以多种方式影响癌症的发生和发展。癌症特异性的可变剪接具有显著的诊断价值,是极有价值的癌症标记,也是潜在的药物靶标。目前科学家们已发现了一些具有可变剪接的癌症相关基因,但癌症中可变剪接的调控网络还有待细致发掘。

Single-Cell Transcriptome Analyses Reveal Signals to Activate Dormant Neural Stem Cells

1. 神经干细胞具有自我更新能力,能够分化产生神经组织中不同细胞类型的细胞,它的功能失调与许多神经退行性疾病的发生和发展密切相关。
2. 成体神经干细胞数量稀少,所处环境复杂,使得在体识别、解析成体神经干细胞的分子特征及示踪成体干细胞的分化谱系面临巨大的挑战。
3.近年来,单细胞转录组测序分析技术有很大的发展。

Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells

一种罕见的多能造血干细胞群体(HSCs)需要连续生产百万成熟血细胞,同时保持不同谱系之间的正确平衡。在造血层次结构的顶点所在的最原始的长期重建造血干细胞(LT-HSCs)。LT-HSCs可以进行三种类型的细胞分裂:(1)重建对称细胞分裂产生补充LT-HSC库中的两个LT-HSC的子代细胞; (2)对称分裂来补充生产短期重建造血干细胞(STHSCs)和多能祖细胞(MPP的);及(3)不对称分裂,其中一个子细胞仍然是干细胞,其他的功能发生改变。
在骨髓(BM)中造血干细胞的能力会随着年龄增加而显著下降。相应的在老年人中骨髓性疾病例如:白血病,获得性免疫系统功能降低和贫血病的发病率显著增加。目前干细胞衰老主要有两个模型:1,特定表型的多个HSCs克隆共存,但是他们的相对频率会随年龄的变化而改变;2,所有的造血干细胞经历与年龄感官潜在的协同变化。尽管对HSCs功能的随着年龄增加而下降进行了广泛的研究,但是潜在的HSCs衰老的分子机制仍然不清楚。

Growth Factor FGF2 Cooperates with Interleukin-17 to Repair Intestinal Epithelial Damage

肠道微生物在营养吸收和人体免疫系统的发展过程中起到根本作用,而且肠道微生物与宿主间的共生关系在维持肠道内稳态中至关重要。肠道上皮受损后如果无法适当的修复将导致菌群结构失调,进而引发炎症反应,并最终引发炎性肠道疾病(IBD)或结直肠癌(CRC)。然而,对于肠道上皮损伤后如何修复重建肠道内稳态,以避免失调导致的疾病,我们仍然知之甚少。因此,本文旨在阐明菌群驱动的生长因子FGF2与白介素IL-17是如何协作促进修复受损的肠道上皮屏障的。

RBFox2 Binds Nascent RNA to Globally Regulate Polycomb Complex 2 Targeting in Mammalian Genomes

PRC2能够通过EZH2甲基转移酶活性,修饰H3K27三甲基化抑制基因的转录表达。近些年来,表观调控研究领域的热点在于探索何种媒介介导了PRC2复合体结合至靶标染色质,从而行使表观调控的功能。其中,LncRNA介导的PRC2在染色质上的结合和基因表达调控机制已经非常清楚,例如RepA、Hotair等,但是除了LncRNA外,是否存在其它的调控因子还未解答。2012年NSMB发表文章报道Intronic RNA能够介导PRC2的顺式调控能力;2013年,同样也是NSMB发表文章表明PRC2复合体不仅能够结合LncRNA,还能与各式各样的RNA相互作用,包括成熟的mRNA;同年,NSMB文章揭示了PRC2能够结合至新生RNA,鉴于新生RNA与染色质的空间距离较近,这些线索提示新生RNA可能介导PRC2复合体对染色质的结合和调控